

TiO₂纳米粒子增强的光纤损失模式共振折射率 传感器

代小爽^{1,2,3}, 王双^{1,2,3}, 谭珂^{1,2,3}, 霍形^{1,2,3}, 江俊峰^{1,2,3}, 刘铁根^{1,2,3} ¹天津大学精密仪器与光电子工程学院, 天津 300072; ²天津大学光电信息技术教育部重点实验室, 天津 300072; ³天津大学光纤传感研究所, 天津 300072

摘要 以多模光纤为基底来实现损失模式共振(LMR)折射率传感的灵敏度较低,在利用铟锡氧化物(ITO;In₂O₃和SnO₂的质量分数分别为90%和10%)激发光纤LMR传感的基础上,在ITO薄膜上静电组装二氧化钛(TiO₂)纳米粒子,实现 折射率灵敏度的提升。使用Kretschman结构模型对传感器进行理论分析,仿真分析了LMR共振阶数与ITO薄膜厚度的 关系,以及ITO作为LMR膜层实现折射率传感的可行性。通过在光纤侧壁磁控溅射ITO薄膜以产生LMR效应,制备 ITO-LMR折射率传感器。通过折射率传感实验对ITO-LMR和TiO₂-ITO-LMR两种传感器进行性能测试,在1.3333~ 1.3840的折射率变化范围内,TiO₂-ITO-LMR传感器灵敏度可达1651.659 nm/RIU,相较于ITO-LMR折射率传感器,其 灵敏度提升了3.058倍。

关键词 光纤光学;损失模式共振;折射率传感器;铟锡氧化物;二氧化钛纳米粒子 中图分类号 O439 **文献标志码** A

DOI: 10.3788/AOS222076

1 引 言

光纤损失模式共振(LMR)传感器具有无标签测 量和较高的检测灵敏度,已成为现代光学检测和测量 的主要技术之一,并且被广泛应用于多种参量的测量 传感中^[14]。不同于光纤表面等离子体共振(SPR)^[5-6], LMR的激发无需依赖于光的偏振、薄膜材料来源广泛 且成本低廉,并且可通过改变薄膜厚度来调节共振波 长与传感灵敏度等^[7]。基于此,光纤LMR传感器成为 传感领域的研究热点之一。

在国防航空航天、工农业、食品安全等重点领域, 对折射率的检测具有重要的实际意义和巨大的应用价 值,LMR传感技术也被广泛应用于折射率传感器的设 计与研发中^[89]。基于铟锡氧化物(ITO;In₂O₃和SnO₂ 的质量分数分别为90%和10%)的光纤LMR折射率 传感器首次由Del Villar等^[10]于2010年提出。外部待 测分析物的折射率发生变化,引起LMR的共振波长变 化,进而实现折射率传感。近些年,提高光纤LMR折 射率传感性能的研究主要考虑光纤结构优化^[11-13]和敏 感材料开发^[9,14-15]两个方面。光纤结构优化一般是将 薄膜材料和锥形光纤、D型光纤等相结合来提高灵敏 度,但是经结构优化后的光纤普遍存在鲁棒性差、制备 成功率低等劣势。敏感材料开发方面的研究主要涉及 二维材料^[16]、金属纳米颗粒^[17]、金属氧化物纳米颗粒^[9] 以及复合材料^[15]等,这些材料具有较好的吸附功能和 更大的比表面积,可以有效提高基于原始LMR传感器 的传感性能。Wang等^[9]提出一种基于SnO₂薄膜的光 纤LMR折射率传感器,并进一步在SnO₂薄膜上覆盖 由溶胶-凝胶法合成的SnO₂纳米颗粒来提高传感器的 灵敏度,通过理论和实验研究相结合的方式将折射率 灵敏度提高了55.9%。TiO₂作为一种半导体金属氧 化物,除具备半导体的基本性能外,还表现出比表面积 大、疏松多孔、黏附力强、化学性质稳定等特点。因此, 为提高光纤LMR的折射率灵敏度,本文选择TiO₂纳 米粒子作为实现共振增强的金属氧化物纳米粒子,以 此实现折射率增敏效果。

本文利用磁控溅射技术在多模光纤侧壁溅射ITO 薄膜以产生LMR。为提升折射率灵敏度,在ITO薄膜 上静电组装TiO₂纳米粒子。实验结果表明,在TiO₂纳 米粒子的辅助下,TiO₂-ITO-LMR传感器的折射率灵 敏度达到1651.659 nm/RIU,是ITO-LMR传感器折 射率灵敏度(407.062 nm/RIU)的4.058倍,进一步验 证了金属氧化物纳米粒子在LMR折射率传感中具有 良好的应用前景。

收稿日期: 2022-11-30; 修回日期: 2022-12-21; 录用日期: 2023-01-29; 网络首发日期: 2023-02-07

基金项目:国家自然科学基金重点项目(62035006)、国家自然科学基金山东联合基金重点项目(U2006216)

通信作者: *shuangwang@tju.edu.cn

2 基本原理与仿真分析

2.1 LMR的基本原理

与基于贵金属材料的 SPR 传感不同, ITO、TiO。、 SnO₂等金属氧化物,以及聚丙烯胺盐酸盐(PAH)、聚 苯乙烯磺酸钠(PSS)等聚合物材料都可以实现LMR 传感。SPR与LMR的区别重点表现在以下几个方 面:1) 激发材料与机制不同。当薄膜介电常数的实部 为负且数值高于薄膜本身介电常数的虚部和薄膜周围 材料介电常数的实部时,倏逝波与表面等离子体波满 足相位匹配条件,就会产生SPR:当薄膜介电常数的 实部为正且数值高于薄膜本身介电常数的虚部和薄膜 周围材料介电常数的实部时,波导模式与薄膜的特定 损失模式之间的耦合发生在薄膜厚度的特定值处,就 会产生LMR。2)与TM偏振光激发的SPR相比, LMR可以同时被TE和TM偏振光激发。3)SPR与 LMR的透射光谱有所不同,随着薄膜厚度的增加,更 多的光波导模式满足在薄膜中传输的条件,使得模式 的重新分布或者转换,因此,LMR不会像SPR一样随 着膜层厚度的增加而消失,反而会激发出更高阶的 共振。

Kretschmann构型方法是迄今为止应用最广泛的

第 43 卷 第 10 期/2023 年 5 月/光学学报

衰减全反射(ATR)方法,用于薄膜涂层的棱镜基底上 波导模式和特定模式的耦合^[18]。LMR现象发生时,为 使薄膜中的损失模式与倏逝波有效耦合,需满足相位 匹配(即二者传播常数的实部相等)和模场重叠的条 件,当损失模接近截止时,在特定薄膜厚度处产生 LMR,这导致了透射光谱的衰减下降。基于ITO的光 纤LMR传感器如图1所示。其原理可简化为:当入射 光传输到去包层光纤区域处,由于高折射率薄膜作为 新的包层,不再满足全反射条件,部分光波会溢出纤芯 在薄膜中传播,由导模向损失模式转变,在高折射率薄 膜传输的光满足全反射条件并且产生倏逝波,当倏逝 波的有效模式折射率与损失模式波的有效折射率匹配 时,就会发生LMR现象。LMR传感器共振波长随着 薄膜材料的有效折射率变化,而薄膜材料的有效折射 率在很大程度上取决于外界待测分析物的折射率。当 外界待测分析物的参数发生变化时,即附着到薄膜材 料上的物质的折射率发生变化,则薄膜材料的有效折 射率发生变化,因此LMR传感器共振波长会随之变 化。一般情况下,这种变化规则表现为:随着外界待测 分析物折射率的增加,LMR传感器共振波长发生红 移。基于此,根据共振波长的偏移量判断待测分析物 折射率的变化,从而实现传感。

图 1 LMR 传感器结构及传感原理。(a) LMR 传感器结构;(b) LMR 传感原理 Fig. 1 LMR sensor structure and sensing principle. (a) LMR sensor structure; (b) LMR sensing principle

(b)

采用基于 Kretschmann 构型的 ATR 方法进行光 纤 LMR 的光谱计算。对于图 1 所示的光纤 LMR 传感 器结构,透射率的计算公式^[19]为

$$T(\lambda) = \frac{\int\limits_{\theta_{c}}^{90} P(\theta) R^{N(\theta)}(\theta, \lambda) d\theta}{\int\limits_{\theta_{c}}^{90^{\circ}} P(\theta) d\theta}, \qquad (1)$$

式中: $\theta_c = \arcsin(n_c/n_0)$ 为光纤芯层全反射临界角, n_{cl} 和 n_0 分别为光纤包层和芯层的折射率; $P(\theta) = \epsilon_0 \sin\theta \cos\theta/(1 - \epsilon_0 \cos^2\theta)^2$ 为光纤端面上光信号功率的分布函数, θ 为入射角, ϵ_0 为光纤的介电常数。由于 引入光纤的光是无偏振的,因此式(1)中 $R^{N(\theta)}$ 可表示 为 $R^{N(\theta)}(\theta, \lambda) = [R^{N(\theta)}_{TM}(\theta, \lambda) + R^{N(\theta)}_{TE}(\theta, \lambda)]/2$,即TE和 TM模反射光功率的线性组合,反射次数 $N(\theta)$ 可表示 为 $N(\theta) = L/(d \tan \theta)$,其中L为LMR传感器传感区 域的长度,d为光纤直径。

采用不同的技术在光纤或其他基底上沉积ITO 薄膜,所得材料的性质也会表现出很大的不同。本文 选择使用Drude模型建模的ITO复介电函数,其表达 式¹⁰⁰为

$$\varepsilon(\omega) = \varepsilon_{\infty} - \frac{\omega_{p}^{2}}{\omega^{2} + i\frac{\omega}{\tau}}, \qquad (2)$$

研究论文

式中: ϵ_{∞} 为高频介电常数; τ 为电子散射时间; ω_{p} 为等 离子体频率; ω 为入射光频率。具体参数如下: ϵ_{∞} = 3.5、 τ = 6.58×10⁻¹⁵ s/rad、 ω_{p} = 1.533×10¹⁵ rad/s。

2.2 ITO-LMR 仿真分析

不同于光纤 SPR 技术,光纤 LMR 技术可通过调整 ITO 薄膜厚度实现共振波长的调制。设置传感区域的光纤直径为 400 μm,长度为 10 mm, ITO 的介电常数由式(2)给出,光纤的介电常数由 Sellmeier 方程^[20]来计算,并设定外界待测分析物的折射率为 1.333。根据三膜层传输矩阵模型^[21],仿真结果如图 2

第 43 卷 第 10 期/2023 年 5 月/光学学报

所示。从图 2(a)可以看到,随着 ITO 薄膜厚度增加至200 nm,一阶 LMR 由可见光波段逐渐红移至近红外波段,并且在可见光波段产生新的共振,即二阶共振。以此类推,随着膜层厚度的增加,逐步产生更高阶共振,并且LMR 传感器高阶共振光谱的半峰全宽优于低阶共振,但折射率灵敏度降低。重点关注一阶共振的情况,发现当 ITO 厚度增加到一定值后,会产生共振饱和现象,共振波长不再发生红移。图 2(b)展示了薄膜厚度为1200 nm 时的归一化 LMR 光谱,可以看到, 在可见光到近红外波段共产生七阶 LMR。

图 2 基于 ITO 薄膜的 LMR 光谱。(a) ITO 厚度与 LMR 传感器共振波长的关系;(b)高阶共振光谱 Fig. 2 LMR spectra based on ITO. (a) Relationship between ITO thickness and resonance wavelength of LMR sensor; (b) high order resonance spectrum

根据光纤LMR传感器的理论模型,理论仿真说明 其作为折射率传感的可行性。设置ITO薄膜厚度为 430 nm,当外界待测分析物的折射率从1.333渐变至 1.382时,由式(1)计算得到光纤LMR传感器的归一 化光谱,如图3所示。随着外界待测分析物折射率的 增加,共振波长从709.186 nm 红移至730.606 nm,共 振波谷也逐渐加深。不同折射率与所对应的共振波长 成线性关系,线性拟合系数为0.999。

3 实验结果与讨论

对芯径为400 μm的光纤进行处理。使用锋利刀 片去除距离光纤端面5 cm 处的涂覆层和聚合物包层, 去除厚度为1 cm,在大芯径光纤切割刀的辅助下对裸 露纤芯部分的光纤进行端面切平,获得一端具有平整 端面的光纤;在距离平整光纤端面5 cm 处,采用同样 的方法获得另一端端面平整的光纤,与上一步的区别 仅在于此步骤不去除光纤包层。将裸露纤芯部分作为 传感区域,在此光纤端面进行镀铝膜处理以提升反射 率,在此过程中注意对光纤侧壁进行保护,避免铝膜对 光纤侧壁的影响。为激发LMR效应,对传感区域的光 纤侧壁进行磁控溅射ITO薄膜处理,镀膜后的光纤截 面扫描电子显微镜(SEM)图像如图4(a)所示,可见

研究论文

ITO 膜层分布均匀,其局部放大图如图 4(b)所示,膜 层厚度为 431.7 nm。为验证纳米粒子的折射率灵敏 度增强效果,在 ITO 薄膜上静电组装 TiO₂纳米粒子。 对质量浓度为 20 mg/mL 的 TiO₂纳米粒子分散液进行 超 声处理,制备阳离子溶液,并以质量浓度为 5 mg/mL 的聚苯乙烯磺酸(PSS)水溶液为阴离子溶 液,将 ITO-LMR 传感器浸入 TiO₂纳米粒子分散液中 3 min,然后用酸性去离子水冲洗 1 min,去除表面的未 第 43 卷 第 10 期/2023 年 5 月/光学学报

附着材料,干燥1min,之后将ITO-LMR传感器浸入 PSS水溶液中2min。重复上述清洗和干燥步骤,至此 实现了TiO₂纳米粒子沉积,将所制备的传感器转移至 60℃的加热台干燥2h,以进一步固定TiO₂纳米粒子。 TiO₂-ITO-LMR传感器表面TiO₂纳米粒子的SEM图 像如图4(c)所示,可以清晰地看到,TiO₂纳米粒子呈 现球状分散在ITO薄膜表面;其局部放大图如图4(d) 所示,TiO₂纳米粒子的粒径均小于200nm。

图 4 SEM 图像。(a)(b) ITO-LMR 传感器截面及其局部放大图;(c)(d) TiO₂-ITO-LMR 传感器表面的 TiO₂纳米粒子及其局部放 大图

Fig. 4 SEM images. (a)(b) Cross section of ITO-LMR sensor and its local enlargement; (c)(d) TiO₂ nanoparticles on the surface of TiO₂-ITO-LMR sensor and their local enlargement

折射率传感实验装置如图5所示。由卤素灯光源 HL-2000发出的光经芯径相匹配的Y型光纤束传输到 反射式ITO-LMR传感器,再由其反射经Y型光纤束 传输到微型光谱仪,由计算机进行共振波长的数据采 集,设定计算机程序每秒采集2帧光谱数据。将ITO-LMR传感器置于不同质量浓度的甘油溶液中进行折 射率传感实验,并由阿贝折射仪进行折射率标定。需

Fig. 5 Schematic of refractive index sensing experiment device based on LMR

要注意的是,在进行下一次折射率测量之前,传感器需 要用去离子水清洗1min,干燥30s,重复此操作三次, 以确保传感结果的准确性。

基于 ITO-LMR 的折射率传感实验测试结果如 图 6 所示。当LMR 传感探针与不同折射率的待测分 析物接触时,相应的光谱会发生变化,具体表现为 LMR 传感器的共振波长发生漂移,且折射率响应时间 小于 0.5 s。从图 6(a)可以看到,随着待测分析物折射 率 的 增 大,ITO-LMR 传 感 器 的 共 振 波 长 从 726.8134 nm 红移至 748.1716 nm,且共振深度逐渐增 加。从图 6(b)可以看到,对于外界折射率从 1.3333增 加 到 1.3840,光 纤 LMR 传 感 器 的 灵 敏 度 为 407.062 nm/RIU,拟合系数为 0.995。

在 ITO-LMR 传感探针的基础上,用去离子水清洗表面残留的甘油溶液,并且静电组装 TiO₂/PSS 双层膜^[22]。利用 TiO₂纳米粒子辅助增强的 ITO-LMR 传感器共振波长与折射率变化关系如图 7 所示。在增大折射率和减小折射率的过程中,进行不同折射率下的 共振波长数据采集,在每个折射率下重复采集光谱 20 次以上,以此计算折射率传感器的分辨率。当折射率

图 6 ITO-LMR 折射率传感实验测试结果。(a)不同折射率下 ITO-LMR 传感器归一化光谱;(b)灵敏度曲线

Fig. 6 ITO-LMR refractive index sensing test results. (a) Normalized transmission spectra of ITO-LMR sensor under different refractive indices; (b) fitting sensitivity curve

梯度为1.3333、1.3408、1.3484、1.3552、1.3606、 1.3696、1.3741、1.3798、1.3829时, TiO₂-ITO-LMR 传感器的共振波长相对于 ITO-LMR 发生红移,这是 因为纳米粒子具有较大的表面积,从而影响ITO薄膜 的性能。

在增大和减小折射率的过程中记录其在不同折射 率下的折射率与共振波长的关系与灵敏度曲线,如 图 8 所示。随着折射率的增加,灵敏度也增大,最大折 射率灵敏度可达 1651.659 nm/RIU, 是 ITO-LMR 传 感器折射率灵敏度的4.058倍。此外,实验结果在折 射率的变化过程中表现出较好的一致性。各个折射率 下的共振波长、波长检测标准差、灵敏度以及分辨率如 表1所示,可见TiO₂-ITO-LMR传感器折射率检测的 分辨率优于 8.89×10⁻⁴ RIU。

Table 1 Renderive index detection resolution under under tenderive indices of the sensor				
Refractive index /RIU	Resonance wavelength /nm	Wavelength detection standard deviation /nm	Sensitivity $/(nm \cdot RIU^{-1})$	Resolution $/(10^{-4} \text{ RIU})$
1.3333	744.525	0.399	496.537	8.04
	744.543	0.412	463.635	8.89
1.3408	747.621	0.456	660.520	6.90
	747.664	0.453	642.791	7.05
1.3484	753.399	0.459	827.228	5.55
	753.370	0.432	824.923	5.24
1.3552	761.420	0.505	976.502	5.17
	761.367	0.521	988.008	5.27
1.3606	766.578	0.706	1095.268	6.45
	766.746	0.719	1117.762	6.43
1.3696	775.435	0.869	1292.484	6.72
	775.430	0.767	1333.226	5.75
1.3741	782.808	1.075	1391.637	7.72
	783.137	0.813	1441.552	5.64
1.3798	788.808	1.175	1516.940	7.75
	788.852	0.982	1577.258	6.23
1.3829	796.762	1.035	1583.949	6.53
	797.784	0.671	1651.659	4.06

表1 不同折射率下传感器的折射率检测分辨率 Refractive index detection resolution under different refractive indices of the sensor Table 1

结 论 4

设计了一种基于 TiO₂纳米粒子辅助增强的 LMR 折射率传感器。该传感器基于多模光纤的损失模式波 和倏逝波的相位匹配激发LMR,以此进行折射率传 感。实验探究了TiO₂纳米粒子对光纤ITO-LMR传感 器的影响。采用磁控溅射和静电组装法镀制ITO薄 膜和TiO₂纳米粒子,折射率传感实验结果表明,当折 射率变化范围为1.3333~1.3840时,得益于TiO,纳米 粒子的比表面积大的优势, TiO₂-ITO-LMR 传感器灵

Fig. 7 Test results of LMR refractive index sensing experiment based on TiO₂ nanoparticles assisted enhancement

图 8 TiO₂-ITO-LMR 折射率与共振波长的关系。(a)增加折射率过程的折射率与共振波长的关系;(b)增加折射率过程中的灵敏度 曲线;(c)减小折射率过程的折射率与共振波长的关系;(d)减小折射率过程的灵敏度曲线

Fig. 8 Relationship between refractive index and resonance wavelength based on TiO₂-ITO-LMR sensor. (a) Relationship between refractive index and resonance wavelength in the process of increasing refractive index; (b) sensitivity curve in the process of increasing refractive index; (c) relationship between refractive index and resonance wavelength in the process of decreasing refractive index; (d) sensitivity curve in the process of decreasing refractive index

敏度可达1651.659 nm/RIU,相较于ITO-LMR折射 率传感器,其灵敏度提升了3.058倍,折射率检测分辨 率优于8.89×10⁻⁴ RIU。

参考文献

- Arregui F J, Del Villar I, Zamarreño C R, et al. Giant sensitivity of optical fiber sensors by means of lossy mode resonance[J]. Sensors and Actuators B, 2016, 232: 660-665.
- [2] Zamarreño C R, Hernáez M, Del Villar I, et al. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings[J]. Sensors and Actuators B, 2011, 155(1): 290-297.

- [3] Ascorbe J, Corres J M, Matias I R, et al. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances[J]. Sensors and Actuators B, 2016, 233: 7-16.
- [4] Verma R K. Selective detection of urea as milk adulterant using LMR based fiber optic probe[J]. Journal of Food Composition and Analysis, 2022, 114: 104825.
- [5] 刘卓瑶,常建华,倪海彬,等.基于SPR效应的单模光纤高灵 敏度温湿度传感器[J].中国激光, 2023, 50(14): 1410001.
 Liu Z Y, Chang J H, Ni H B, et al. High-sensitivity temperature and humidity sensor based on SPR effect in singlemode fiber[J]. Chinese Journal of Lasers, 2023, 50(14): 1410001.
- [6] 马金英,刘铁根,江俊峰,等.光纤表面等离子体共振传感灵 敏度提高研究进展[J].中国激光,2021,48(19):1906002.

研究论文

Ma J Y, Liu T G, Jiang J F, et al. Progress in sensitivity enhancement for optical fibre surface plasmon resonance sensing [J]. Chinese Journal of Lasers, 2021, 48(19): 1906002.

- [7] Del Villar I, Arregui F J, Zamarreño C R, et al. Optical sensors based on lossy-mode resonances[J]. Sensors and Actuators B, 2017, 240: 174-185.
- [8] Paliwal N, John J. Lossy mode resonance (LMR) based fiber optic sensors: a review[J]. IEEE Sensors Journal, 2015, 15(10): 5361-5371.
- [9] Wang Q, Li X, Zhao W M, et al. Lossy mode resonance-based fiber optic sensor using layer-by-layer SnO₂ thin film and SnO₂ nanoparticles[J]. Applied Surface Science, 2019, 492: 374-381.
- [10] Del Villar I, Zamarreño C R, Hernaez M, et al. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications[J]. Journal of Lightwave Technology, 2010, 28(1): 111-117.
- [11] Fuentes O, Vaiano P, Del Villar I, et al. Improving the width of lossy mode resonances in a reflection configuration D-shaped fiber by nanocoating laser ablation[J]. Optics Letters, 2020, 45 (17): 4738-4741.
- [12] Álvarez-Tamayo R I, Prieto-Cortés P, García-Méndez M, et al. Lossy mode resonance refractometer operating in the 1.55 μm waveband based on TiO_xN_y thin films deposited onto no -core multimode fiber by DC magnetron sputtering[J]. Optical Fiber Technology, 2022, 71: 102929.
- [13] Del Villar I, Zubiate P, Zamarreño C R, et al. Optimization in nanocoated D-shaped optical fiber sensors[J]. Optics Express, 2017, 25(10): 10743-10756.
- [14] Goswami S, Sharma A K. Film thickness dependency and refractive index sensing capabilities of lossy mode resonances in metallic indium-rich ITO thin films[J]. Journal of the Optical Society of America B, 2022, 39(6): 1571-1579.
- [15] Sharma S, Shrivastav A M, Gupta B D. Lossy mode resonance based fiber optic creatinine sensor fabricated using molecular

第 43 卷 第 10 期/2023 年 5 月/光学学报

imprinting over nanocomposite of MoS₂/SnO₂[J]. IEEE Sensors Journal, 2020, 20(8): 4251-4259.

- [16] Wu L M, Wang Q K, Ruan B X, et al. High-performance lossymode resonance sensor based on few-layer black phosphorus[J]. The Journal of Physical Chemistry C, 2018, 122(13): 7368-7373.
- [17] Rivero P J, Urrutia A, Goicoechea J, et al. A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing[J]. Sensors and Actuators B, 2013, 187: 40-44.
- [18] 王畅,王雪,孙旭晴,等.基于物镜耦合的波长-角度共同调制表面等离激元共振传感器[J].光学学报,2021,41(17):1724001.
 Wang C, Wang X, Sun X Q, et al. Objective-coupled wavelength and angle Co-modulated surface plasmon resonance
- sensor[J]. Acta Optica Sinica, 2021, 41(17): 1724001.
 [19] 王一晴,齐跃峰,曹子尧,等.基于银/高纯铟复合膜的表面等 离子体共振折射率传感器[J]. 光学学报, 2023, 43(3): 0328001.
 Wang Y Q, Qi Y F, Cao Z Y, et al. Surface plasmon resonance refractive index sensor based on silver/high purity indium composite film[J]. Acta Optica Sinica, 2023, 43(3): 0328001.
- [20] Zhao W M, Wang Q, Wang X Z, et al. Theoretical and experimental research of lossy mode resonance-based highsensitivity optical fiber refractive index sensors[J]. Journal of the Optical Society of America B, 2019, 36(8): 2069-2078.
- [21] 常鹏翔.基于膜层性能改进的光纤表面等离子体共振传感器研究[D].天津:天津大学, 2020: 25-28.
 Chang P X. Research of fiber-optic surface plasmon resonance sensor based on film performance improvement[D]. Tianjin: Tianjin University, 2020: 25-28.
- [22] Del Villar I, Hernaez M, Zamarreño C R, et al. Design rules for lossy mode resonance based sensors[J]. Applied Optics, 2012, 51(19): 4298-4307.

Optical-Fiber Refractive Index Sensor Based on Lossy Mode Resonance Enhanced by TiO₂ Nanoparticles

Dai Xiaoshuang^{1,2,3}, Wang Shuang^{1,2,3*}, Tan Ke^{1,2,3}, Huo Tong^{1,2,3}, Jiang Junfeng^{1,2,3}, Liu Tiegen^{1,2,3}

¹School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China; ²Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, Tianjin University, Tianjin 300072, China;

³Institute of Optical Fiber Sensing, Tianjin University, Tianjin 300072, China

Abstract

Objective The detection of the refractive index has important practical significance and application value in national defense, aerospace, industry and agriculture, food safety, and other key fields. The optical-fiber lossy mode resonance (LMR) sensors have been widely used in the design and development of refractive index sensors due to their label-free measurement and high detection sensitivity. In addition, the optical-fiber LMR is different from surface plasma resonance (SPR), which is mainly manifested in the following aspects. The excitation of LMR does not depend on the polarization of light, and the film material is widely available and inexpensive. In addition, the resonance wavelength and sensing sensitivity of LMR can be adjusted by changing the thickness of the sensing film. However, most LMR sensors based on multi-mode optical fiber usually have low detection sensitivity. As a kind of semiconductor metal oxide, TiO_2 not only has the basic performance of a semiconductor but also shows the characteristics of a large specific surface area, loose porosity, strong adhesion, and stable chemical properties. Therefore, in this paper, based on the excitation of optical-fiber LMR

refractive index sensing with ITO, TiO_2 nanoparticles are electrostatically assembled on the ITO film to improve refractive index sensitivity. The promising application of metal oxide nanoparticles in LMR refractive index sensing is further validated.

Methods The investigation is based on the theory of optical-fiber LMR sensors. The attenuated total reflectance method of the Kretschmann configuration is used to calculate the optical-fiber LMR spectrum. According to the theoretical model of the optical-fiber LMR refractive index sensor, the relationship between ITO thickness and resonance wavelength of LMR sensor is analyzed by numerical calculations. Besides, the theoretical simulations illustrate its feasibility as a refractive index sensor. The ITO film and TiO₂ nanoparticles are prepared by magnetron sputtering and electrostatic self-assembly method, respectively. At first, the performance of the optical-fiber LMR refractive index sensor with a single ITO film structure is investigated, and the change in LMR resonance wavelength is observed by dipping the sensor into a glycerol solution with different concentrations. Next, the refractive index sensing performance of the optical-fiber ITO-LMR sensor based on the assisted enhancement of TiO₂ nanoparticles is elaborately investigated. By comparing the refractive index sensing performance of the two sensors, the conclusion is drawn.

Results and Discussions The designed optical fiber LMR sensor with ITO film and TiO_2 nanoparticles exhibits deserved refractive index detection performance. Fig. 6 shows the LMR resonance spectrum of the structure with magnetron-sputtered ITO film on the side wall of the optical fiber. The resonance wavelength appears to be red-shifted as the refractive index of the external analyte to be measured increases. Specifically, as the external refractive index changes from 1. 3333 to 1. 3840, the sensitivity of the optical-fiber LMR sensor is 407. 062 nm/RIU with a fitting coefficient of 0. 995. The TiO_2/PSS bilayer film is electrostatically self-assembled based on the ITO-LMR sensing probe. The LMR refractive index sensing performance with ITO film and TiO_2 nanoparticles is shown in Fig. 7. With the increase in the solution refractive index, its resonance wavelength shifts significantly toward the long wavelength direction. The refractive index sensitivity of the sensor reaches up to 1651. 659 nm/RIU. Due to the advantage of the large specific surface area of TiO_2 nanoparticles, the sensitivity is improved by a factor of 3. 058 compared with the LMR sensor coated with only a single ITO film. The detection resolution of the TiO_2 -ITO-LMR refractive index sensor is higher than 8. 89×10^{-4} RIU.

Conclusions In this paper, an LMR refractive index sensor based on the assisted enhancement of TiO_2 nanoparticles is designed. The sensor activates the LMR effect based on the phase matching of the lossy mode wave and the evanescent wave of the multimode fiber to carry out refractive index sensing. The effect of TiO_2 nanoparticles on the optical-fiber ITO-LMR sensor is experimentally investigated. The ITO film and TiO_2 nanoparticles are plated by magnetron sputtering and electrostatic assembly. The results of the refractive index sensing experiments show that in the refractive index variation range of 1. 3333–1. 3840, the sensitivity of the TiO_2 -ITO-LMR sensor can reach 1651. 659 nm/RIU due to the advantage of the large specific surface area of TiO_2 nanoparticles. For the ITO-LMR refractive index sensor, the sensitivity is improved by 3. 058 times. In addition, the TiO_2 -ITO-LMR sensor has a resolution of more than 8. 89×10^{-4} RIU for refractive index detection.

Key words fiber optics; lossy mode resonance; refractive index sensor; indium tin oxide; titanium dioxide nanoparticles